Hybrid multiscale landmark and deformable image registration.

نویسندگان

  • Dana Paquin
  • Doron Levy
  • Lei Xing
چکیده

An image registration technique is presented for the registration of medical images using a hybrid combination of coarse-scale landmark and B-splines deformable registration techniques. The technique is particularly effective for registration problems in which the images to be registered contain large localized deformations. A brief overview of landmark and deformable registration techniques is presented. The hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese, A multiscale image representation using hierarchical (BV;L(2)) decompositions, Multiscale Modeling and Simulations, vol. 2, no. 4, pp. 554{579, 2004, is reviewed, and an image registration algorithm is developed based on combining the multiscale decomposition with landmark and deformable techniques. Successful registration of medical images is achieved by first obtaining a hierarchical multiscale decomposition of the images and then using landmark-based registration to register the resulting coarse scales. Corresponding bony structure landmarks are easily identified in the coarse scales, which contain only the large shapes and main features of the image. This registration is then fine tuned by using the resulting transformation as the starting point to deformably register the original images with each other using an iterated multiscale B-splines deformable registration technique. The accuracy and efficiency of the hybrid technique is demonstrated with several image registration case studies in two and three dimensions. Additionally, the hybrid technique is shown to be very robust with respect to the location of landmarks and presence of noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformable Registration Combined with 3D SIFT Matching and Moving Least Squares

Free-form deformation (FFD) is widely used in deformable image registration. FFD uses a regular grid of control points to generate image deformation. Accurate optimization of the control-point displacement relies on an appropriate initial-deformation of the regular grid. In this work, a hybrid registration of landmark-based and free-form deformation is proposed and applied to lung CT images. Co...

متن کامل

Multiscale deformable registration of noisy medical images.

Multiscale image registration techniques are presented for the registration of medical images using deformable registration models. The techniques are particularly effective for registration problems in which one or both of the images to be registered contains significant levels of noise. A brief overview of existing deformable registration techniques is presented, and experiments using B-splin...

متن کامل

A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images

Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...

متن کامل

Evaluation of deformable image registration in HDR gynecological brachytherapy

Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...

متن کامل

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences and engineering : MBE

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2007